DIGITAL SIGNATURES

By

Bharath A Reddy

Table of Contents

Chapter

 Page Number

3Digital Certificate

Contents of X.509 v3 Certificate
4
Digital Signature
5
Working Model of Digital Signature:
5
Time frame for the validity of Digital Signatures:
6
Digital Time Stamping Service (DTS Service):
7
Certificate Revocation List (CRL):
9
Legal Status of documents signed with Digital Signatures:
10
Implementing a Digital Certificate (or Digital Signature) Solution:
11
Download of CA Certificate:
11
Supplying of User Information:
12
Generating a Key Pair:
12
Submitting Public Key to CA for the Digital Certificate Generation:
14
Signature Verification Process:
16
Signing and Verification of a document
16
Signing a Document/Data:
16
Technology Involved:
16
Creation of a Digital Signature
17
Components of Signed Document:
17
Signature Verification:
18
Verifying a digital Signature
18
XML Signatures:
19
Digital Signatures Utility Architecture:
20
How does an Application speak with the Utility:
22
References:
23

Digital Certificate

Digital Certificates are the electronic counterparts to driver licenses, passports and membership cards. You can present a Digital Certificate electronically to prove your identity or your right to access information or services online.

Digital Certificate, bind an identity to a pair of electronic keys that can be used to encrypt and sign digital information. A Digital Certificate makes it possible to verify someone's claim that they have the right to use a given key, helping to prevent people from using phony keys to impersonate other users. Used in conjunction with encryption, Digital Certificates provide a more complete security solution, assuring the identity of all parties involved in a transaction.

A Digital Certificate is issued by a Certification Authority (CA) and signed with the CA's private key.

A Digital Certificate typically contains the:

· Owner's public key

· Owner's name

· Expiration date of the public key

· Name of the issuer (the CA that issued the Digital Certificate)

· Serial number of the Digital Certificate

· Digital signature of the issuer

A Digital Certificate can also contain other user-supplied information, including:

· Address

· E-mail address

· Basic registration information (country, zip code, age, and gender, …)

The most widely accepted format for Digital Certificates is defined by the CCITT (Comité Consultatif International Téléphonique et Télégraphique) X.509 international Standard; thus certificates can be read or written by any application complying with X.509. Further refinements are found in the PKCS standards and the PEM (Privacy Enhanced Mail) standard.

Digital Certificates use today's strongest cryptographic techniques to ensure that the Digital Certificates are not tampered with or forged. These techniques, developed by RSA Data Security, use a matched pair of keys. Each key performs a one-way transformation on the data that can only be undone by the other key. One key is public and is made publicly available by its owner while the other is private and not shared. This use of public key Cryptography with a 1024-bit key length provides a level of security unavailable with conventional secret key cryptography.

Contents of X.509 v3 Certificate

Version
Version number; an integer, value is “2” for version 3

Serial number
Unique identifier for each certificate generated by issuer; integer

Signature algorithm
Algorithm identifier
algorithm used to sign certificate

ID
Parameters
should not be used

Issuer name
name of issuer (X.500 “distinguished name” that uniquely identifies a directory object),

Validity period
NotBefore
Time

NotAfter
Time

Subject name
name of subject (X.500 “distinguished name”)

Subject public key
Algorithm identifier
subject’s signature algorithm

Info
Parameters
parameters applicable to subj. pub. Key

Public key
subject’s public key

Issuer unique identifier
(optional) contains additional information about the subject; certificate must be version 2 or higher - not used by the Federal PKI.

Subject unique identifier
(optional) contains additional information about the issuer; certificate must be version 2 or higher - not used by the Federal PKI.

Extensions
(optional)

Issuer’s signature
Algorithm identifier
algorithm used for this signature

Parameters
should not be used

ENCRYPTED (certificate hash)

Digital Signature

A digital signature functions for electronic documents like a handwritten signature does for printed documents. The signature is an unforgeable piece of data that asserts that a named person wrote or otherwise agreed to the document to which the signature is attached.

A digital signature actually provides a greater degree of security than a handwritten signature.

· The recipient of a digitally signed message can verify both that the message originated from the person whose signature is attached and that the message has not been altered either intentionally or accidentally since it was signed.

· Furthermore, secure digital signatures cannot be repudiated; the signer of a document cannot later disown it by claiming the signature was forged. In other words,

Digital Signatures enable "authentication" of digital messages, assuring the recipient of a digital message of both the identity of the sender and the integrity of the message.

Working Model of Digital Signature:

Suppose Alice wants to send a signed message to Bob. She creates a message digest by using a hash function on the message. The message digest serves as a "digital fingerprint" of the message; if any part of the message is modified, the hash function returns a different result. Alice then encrypts the message digest with her private key. This encrypted message digest is the digital signature for the message.

Alice sends both the message and the digital signature to Bob. When Bob receives them, he decrypts the signature using Alice's public key, thus revealing the message digest. To verify the message, he then hashes the message with the same hash function Alice used and compares the result to the message digest he received from Alice. If they are exactly equal, Bob can be confident that the message did indeed come from Alice and has not changed since she signed it. If the message digests are not equal, the message either originated elsewhere or was altered after it was signed.

Note that using a digital signature does not encrypt the message itself. If Alice wants to ensure the privacy of the message, she must also encrypt it using Bob's public key. Then only Bob can read the message by decrypting it with his private key.

It is not feasible for anyone to either find a message that hashes to a given value or to find two messages that hash to the same value. If either were feasible, an intruder could attach a false message onto Alice's signature. Specific hash functions have been designed to have the property that finding a match is not feasible, and are therefore considered suitable for use in cryptography.

One or more Digital Certificates can accompany a digital signature. If a Digital Certificate is present, the Recipient (or a third party) can check the authenticity of the public key.

[image: image1.png]Winen th sender signs the document it
Ie passed hrough a hasing aigorthm

Sending

The signed message
Is et scross he network.

Receiving

Public
Key

Winen th recipient veiies the sendars
signature e sams hashing igortm.
Ie sea1o crete a message digest
andhe signatue s ecrypted using the
Sendors puii ky. If he two are
identical, o signature e vald and

the document has not changed since
itwas sgned

Time frame for the validity of Digital Signatures:

Normally, a key expires after some period of time, such as one year, and a document signed with an expired key should not be accepted. However, there are many cases where it is necessary for signed documents to be regarded as legally valid for much longer than two years; long-term leases and contracts are examples. By registering the contract with a digital time-stamping service at the time it is signed, the signature can be validated even after the key expires.

If all parties to the contract keep a copy of the time-stamp, each can prove that the contract was signed with valid keys. In fact, the time-stamp can prove the validity of a contract even if one signer's key gets compromised at some point after the contract was signed. Any digitally signed document can be time-stamped, assuring that the validity of the signature can be verified after the key expires.

Digital Time Stamping Service (DTS Service):

A digital time-stamping service (DTS) issues time-stamps, which associate a date and time with a digital document in a cryptographically strong way. The digital time-stamp can be used at a later date to prove that an electronic document existed at the time stated on its time-stamp. For example, a physicist who has a brilliant idea can write about it with a word processor and have the document time-stamped. The time-stamp and document together can later prove that the scientist deserves the Nobel Prize, even though an archrival may have been the first to publish.

Here's one way such a system could work. Suppose Alice signs a document and wants it time-stamped. She computes a message digest of the document using a secure hash function and then sends the message digest (but not the document itself) to the DTS, which sends her in return a digital time-stamp consisting of the message digest, the date and time it was received at the DTS, and the signature of the DTS. Since the message digest does not reveal any information about the content of the document, the DTS cannot eavesdrop on the documents it time-stamps. Later, Alice can present the document and time-stamp together to prove when the document was written. A verifier computes the message digest of the document, makes sure it matches the digest in the time-stamp, and then verifies the signature of the DTS on the time-stamp.

To be reliable, the time-stamps must not be forgeable. Consider the requirements for a DTS of the type just described:

1. The DTS itself must have a long key if we want the time-stamps to be reliable for, say, several decades.

2. The private key of the DTS must be stored with utmost security, as in a tamperproof box.

3. The date and time must come from a clock, also inside the tamperproof box, which cannot be reset and which will keep accurate time for years or perhaps for decades.

4. It must be infeasible to create time-stamps without using the apparatus in the tamperproof box.

Bellcore has implemented a cryptographically strong DTS using only software. It avoids many of the requirements just described, such as tamperproof hardware. The Bellcore DTS essentially combines hash values of documents into data structures called binary trees, whose "root" values are periodically published in the newspaper. A time-stamp consists of a set of hash values, which allow a verifier to recompute the root of the tree. Since the hash functions are one-way, the set of validating hash values cannot be forged. The time associated with the document by the time-stamp is the date of publication.

The use of a DTS would appear to be extremely important, if not essential, for maintaining the validity of documents over many years. Suppose a landlord and tenant sign a twenty-year lease. The public keys used to sign the lease are set to expire after two years. Solutions such as re-certifying the keys or resigning every two years with new keys require the cooperation of both parties several years after the original signing. If one party becomes dissatisfied with the lease, he or she may refuse to cooperate. The solution is to register the lease with the DTS at the time of the original signing; both parties would then receive a copy of the time-stamp, which can be used years later to enforce the integrity of the original lease.

In the future, it is likely that a DTS will be used for everything from long-term corporate contracts to personal diaries and letters. Today, if an historian discovers some lost letters of Mark Twain, their authenticity is checked by physical means. But a similar find 100 years from now may consist of an author's computer files; digital time-stamps may be the only way to authenticate the find.

Certificate Revocation List (CRL):

When a certificate is issued, it is expected to be in use for its entire validity period. However, various circumstances may cause a certificate to become invalid prior to the expiration of the validity period. Such circumstances include change of name, change of association between subject and CA (e.g., an employee terminates employment with an organization), and compromise or suspected compromise of the corresponding private key. Under such circumstances, the CA needs to revoke the certificate.

X.509 defines one method of certificate revocation. This method involves each CA periodically issuing a signed data structure called a certificate revocation list (CRL). A CRL is a time stamped list identifying revoked certificates, which is signed by a CA and made freely available in a public repository. Each revoked certificate is identified in a CRL by its certificate serial number. When a certificate-using system uses a certificate (e.g., for verifying a remote user's digital signature), that system not only checks the certificate signature and validity but also acquires a suitably recent CRL and checks that the certificate serial number is not on that CRL. The meaning of "suitably-recent" may vary with local policy, but it usually means the most recently issued CRL. A CA issues a new CRL on a regular periodic basis (e.g., hourly, daily, or weekly). An entry is added to the CRL as part of the next update following notification of revocation.

Legal Status of documents signed with Digital Signatures:

If digital signatures are to replace handwritten signatures they must have the same legal status as handwritten signatures, i.e., documents signed with digital signatures must be legally binding.

NIST (National Institute of Standards and Technology) has stated that its proposed Digital Signature Standard should be capable of "proving to a third party that data was actually signed by the generator of the signature." Furthermore, U.S. federal government purchase orders will be signed by any such standard; this implies that the government will support the legal authority of digital signatures in the courts. Some preliminary legal research has also resulted in the opinion that digital signatures would meet the requirements of legally binding signatures for most purposes, including commercial use as defined in the Uniform Commercial Code (UCC). A GAO (Government Accounting Office) decision requested by NIST also opines that digital signatures will meet the legal standards of handwritten signatures.

However, since the validity of documents with digital signatures has never been challenged in court, their legal status is not yet well defined. Through such challenges, the courts will issue rulings that collectively define which digital signature methods, key sizes, and security precautions are acceptable for a digital signature to be legally binding.

Digital signatures have the potential to possess greater legal authority than handwritten signatures. If a ten-page contract is signed by hand on the tenth page, one cannot be sure that the first nine pages have not been altered. However, if the contract was signed with digital signatures, a third party can verify that not one byte of the contract has been altered.

Currently, if two people want to digitally sign a series of contracts, they might first sign a paper contract in which they agree to be bound in the future by any contracts digitally signed by them with a given signature method and minimum key size.

Implementing a Digital Certificate (or Digital Signature) Solution:

Implementing an SSL-Enabled Server like Netscape Enterprise 2.0, Microsoft Internet Information Server 3.0, and Apache Stronghold-SSL greatly increases security of the overall solution.

Users accessing Web Server needs to have a Web Client that supports SSL 3.0 and X.509 Certificates and an appropriate Digital Certificate. Netscape Navigator, Microsoft Internet Explorer, and a growing list of other browsers provide the necessary support for Digital Signatures.

Digital Certificates can be issued by any Certification Authority (CA), for example American Express itself is a CA and can issue Digital Certificates to end users. These Digital Certificates are also called Personal Digital Certificates or Personal Certificates. The issuing of a Digital Certificate may involve the following steps:

1. Download of CA Certificate

2. Supplying of User Information

3. Generating a Key Pair

4. Submitting Public Key to CA for the Digital Certificate Generation

Download of CA Certificate:

A certificate is an electronic document used to identify an individual, company, or other entity. Certificate authorities (CAs) are entities that validate identities and issue certificates. They can be either independent third parties or organizations running their own certificate-issuing server software (such as Netscape Certificate Server or Custom Developed software using Developer Tools/API’s). The methods used to validate an identity vary depending on the policies of a given CA. In general, before issuing a certificate, the CA must use its published verification procedures for that type of certificate to ensure that an entity requesting a certificate is in fact who it claims to be.
Prior to the issuing of a Digital Certificate to the Client or to the user or to the Browser, the browser needs to have a Certificate of the CA properly installed in it. To actually achieve this a hyper link can be provided pointing to the certificate of the CA and the user can download the certificate and install it in his browser. This is a seamless process and doesn’t require much of the user interaction. The CA Certificate is a X.509 format Certificate that will be having the information about the CA and signature of the CA indicating that the Certificate indeed has been signed by his Private key.
Supplying of User Information:

User information is required to be included in the Digital Certificate and validating the user against the information given by him. The required information can be basic registration information like email address, name, etc.
Generating a Key Pair:

Public-key cryptography involves a pair of keys - a public key and a private key associated with an entity that needs to authenticate its identity electronically or to sign or encrypt data. Each public key is published as part of a certificate, and the corresponding private key is kept secret. Data encrypted with your public key can be decrypted only with your private key. A key pair should be generated at the client using the browser’s capabilities. Internet Explorer supports Microsoft Crypto 2.0 API for version IE 4.x and higher which provides the capabilities of generating a Key Pair and digitally signing of the documents. The following discussions use Netscape Communicator 4.x as the reference. Netscape Communicator 4.0 supports a new HTML tag specifically for key generation and submission of the public key as part of an HTML form. This mechanism is designed for use in WWW based certificate management systems. It is expected that the <KEYGEN> tag will be used in an HTML Form along with other information needed to construct a certificate request, and that the result of the process will be a signed certificate.

The new tag is as follows:

<KEYGEN NAME="name" CHALLENGE="challenge string" KEYTYPE="type" PQG="pqg-params">

The KEYTYPE parameter is used to specify what type of key is to be generated. Valid values are "RSA", which is the default, and "DSA".

The PQG parameter is only used for DSA keys. It specifies the DSA PQG parameters, which are to be used in the key generation process. The value of the PQG parameter is the BASE64 encoded, DER encoded Dss-Params as specified in the IETF PKIX part 1 Internet draft.

The NAME and CHALLENGE attributes are required. The KEYTYPE attribute is optional for RSA key generation and required for DSA key generation. The PQG attribute is required for DSA key generation and ignored for RSA key generation. The KEYGEN tag is only valid within an HTML form. It will cause some sort of selection to be presented to the user for selecting key size. The UI for the selection may be a menu, radio buttons, or possibly something else. The Communicator presents several possible key sizes. Currently the Export version will only allow 512-bit, while the US version will give the user the option of 512-bit, 768-bit, and 1024-bit. When the submit button is pressed, a key pair of the selected size is generated. The private key is encrypted and stored in the local key database.

The following is the structure of the Public Key and Challenge format:

PublicKeyAndChallenge ::= SEQUENCE {

 spki SubjectPublicKeyInfo,

 challenge IA5STRING

 }

SignedPublicKeyAndChallenge ::= SEQUENCE {

 publicKeyAndChallenge PublicKeyAndChallenge,

 signatureAlgorithm AlgorithmIdentifier,

 signature BIT STRING

 }

The public key and challenge string are DER encoded as PublicKeyAndChallenge, and then digitally signed with the private key to produce a SignedPublicKeyAndChallenge. The SignedPublicKeyAndChallenge is base64 encoded, and the ascii data is finally submitted to the server as the value of a form name/value pair, where the name is name as specified by the NAME= attribute of the KEYGEN tag. If no challenge string is provided, it will be encoded as an IA5STRING of length zero. Here is an example form submission, as the HTTP server delivers the data to a CGI program:

commonname=John+Doe&email=doe@foo.com&org=Foobar+Computing+Corp.&orgunit=Bureau+of+Bureaucracy&locality=Anytown&state=California&country=US&key=MIHFMHEwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAnX0TILJrOMUue%2BPtwBRE6XfV%0AWtKQbsshxk5ZhcUwcwyvcnIq9b82QhJdoACdD34rqfCAIND46fXKQUnb0mvKzQID%0AAQABFhFNb3ppbGxhSXNNeUZyaWVuZDANBgkqhkiG9w0BAQQFAANBAAKv2Eex2n%2FS%0Ar%2F7iJNroWlSzSMtTiQTEB%2BADWHGj9u1xrUrOilq%2Fo2cuQxIfZcNZkYAkWP4DubqW%0Ai0%2F%2FrgBvmco%3D

Submitting Public Key to CA for the Digital Certificate Generation:

Once the entire information like Basic User information, and the public key has been submitted the CA for verification process, the CA may check user’s credit card information or SSN or any valid source which confirms user’s identity. The request process may look like this:

[image: image2.png]JohnDoe

« Provides proof of
John Doe’s identity.

« Uses Communicator to | 4—+
generate public-private
Icey pair.

« Sends proof and
public key to CA.

« Keeps private ey secret.

Certificate Authority (CA)

« Uses proof to confirm
John Dee's identity.

John Doe’s Certificate
John Dos's public key =

Certificates serial number

Certificate Authority (CA)
« Uses infarmation about John Do,
including John Doe's public key;
to create John Doe's certificate

Certificate’s vdldity period

« Signs certificate with CA's
oven digital signature and
sends certificate to John Do

John Dog's DN

Issuer's DN

Issuer’s digital
signature

John Dee can use his certificate
asa"letter of introduction” to
servers that trust the CA.

As shown in the figure, John Doe provides the CA with proof of his identity, typically including an email address, employee number, or other information that uniquely identifies him for the purposes of the CA. Filling in a form often does this. Communicator automatically generates a public-private key pair, sends the public key and information provided by the user to the CA, and stores the private key in the local private-key database. (If this is the first private key it has generated for the user's profile, Communicator also asks the user to specify a password, which it uses from that point on to protect the private-key database).

After the CA has verified John Doe's identity according to the requirements of the certificate type, the CA creates a certificate that includes a DN (Distinguished Name) for John Doe; a public key; other information, such as the dates during which the certificate is valid and the certificate's serial number; and most importantly, the CA's digital signature on the certificate. The CA's digital signature allows John Doe to use the certificate as a "letter of introduction" to servers that trust the CA. The CA's signature is obtained by encrypting a one-way hash of John Doe's certificate with the CA's private key. The Certificate (Digital Certificate) thus generated by the CA is downloaded by the user using his browser. The CA sends the Certificate in X.509 format using the mime type application/x-x509-user-cert. Netscape Communicator after receiving the certificate identifies the mime type and recognizes the content as User Certificate or Personal Certificate (Digital Certificate) and installs it appropriately in the browser.

Signature Verification Process:

Once the user has acquired his/her Digital Certificate then he is ready to sign any Document or Data online. Since the CA has verified his/her identity, any Web Server who recognizes the CA as a valid Certification Authority can accept those certificates and documents signed by the user using his Digital Certificate.

Signing and Verification of a document

1. Signing a Document/Data

2. Technology Involved

3. Components of Signed Document

4. Signature Verification

Signing a Document/Data:

Electronic commerce transactions require the ability to prove that someone has authorized a transaction. One way to provide such a proof is to associate a digital signature with data generated as the result of a transaction. Such a transaction could be a purchase order or any other financial document. However, until now, there has been no widely available standards-based way to digitally sign forms or other transaction-related text on the Web. Netscape Communicator 4.04 allows users to digitally sign transactions. Called Form Signing, this technology allows web sites to ask users to digitally sign transactions, thus providing the higher level of assurance that a verifiable digital signature brings. Form Signing allows any kind of agreement to be digitally signed, including a checking account application form, a funds transfer, an online credit card purchase, or any other web-based text string.
Technology Involved:

Netscape Communicator 4.04 has introduced the crypto.signText() method, which allows JavaScript developers to request that a user use his or her private key to digitally sign a text string. This can be useful any time it is necessary to keep persistent proof of a transaction. Example usage of crypto.signText() is

var signedText = theWindow.crypto.signText(dataToBeSigned, "ask", caOption);

Here the dataToBeSigned is the data that is to be signed by the user. crypto.signText, that asks the user to sign a string of text, such as a form in a web page. The private keys associated with either S/MIME or client SSL certificates may be used to create the signature. One of the parameters passed to signText determines whether it selects a certificate for signing purposes automatically or asks the user to choose one. For example, when a user fills in a form and clicks the Submit button, a call to the signText method with the parameter caOption set to "ask" displays a dialog box that shows the exact text to be signed and asks the user to choose a certificate with which to do the signing. Once the user selects the Digital Certificate and submits ok the crypto.signText returns a base-64-encoded PKCS #7 signed object. This is a simple example of a script that signs a string:

<html>

<head>

<script>

var foo = crypto.signText("Bill of Sale\n--------------------\n3 Tires $300.00\n1 Axle $795.00\n2 Bumpers $500.00\n--------------------\nTotal Price $1595.00", "ask");

</script>

</head>

<body>

This is an HTML page<p>

<script>

document.write(foo);

</script>

</body>

</html>

Creation of a Digital Signature

[image: image3.png]SignersprivteKey,

Components of Signed Document:

The Signed Data is a PKCS #7 blob, which encapsulates a lot of information. It encapsulates the Digital Signature of the User signed by his Digital Certificate. The PKCS #7 blob (Or the Signed Data) is described in the following table:

PRIVATE
Field
Value

Version
1

DigestAlgorithms
SHA-1

ContentInfo.contentType
Data

ContentInfo.content
Not present. The data signed is not included in the signedData object.

Certificates
User's signing certificate and any intermediate CAs required to chain up to one of the trusted CAs listed in the caNameString parameters.

Crls
Not present.

SignerInfo.version
1

SignerInfo.issuerAndSerialNumber
The issuer and serial number for the certificate used to sign the data.

SignerInfo.digestAlgorithm
SHA-1

SignerInfo.authenticatedAttributes
Three attributes are present:

· A PKCS #9 content type attribute whose value is data.

· A PKCS #9 message digest attribute whose value is the message digest of the content.

· A PKCS #9 signing time attribute, whose value is the time that the object was signed.

SignerInfo.digestEncryptionAlgorithm
Algorithm used to encrypt the message.

SignerInfo.unauthenticatedAttributes
Not present.

The Digital Signature is finally is generated (For more information of Digital Signature Read the above material).

Signature Verification:

The signed Data (PKCS #7 blob) is send to the server along with the form’s other data in the form of name value pairs. The signed data is now parsed at the server side by some CGI (Common Gateway Interface) process like (Servlets). In the first step the signature is decrypted using the specified algorithm by the Public Key of the User’s Digital Certificate and produces a message digest (for e.g.: x1). The next step involved is to take the original Data/Document and apply one-way message digest algorithm specified by the field signerInfo.digestAlgorithm from the above tabular data and produce message digest (for e.g.: x2). If x1=x2 then the it signifies that the data has not been tampered and from the first step since the Original Data has been encrypted by the User’s Private Key it signifies that the User has digitally signed the document ‘cause it was properly decrypted using the Public Key. Thus the signature has been verified by the System. If any of the above process fails it indicates the system has failed to verify the signature of the user or rather it is a bad signature (For digital Signatures refer to the Description in the beginning of the Document).
Verifying a digital Signature

[image: image4.png]prr |

i1 message Bgects
reienca, e donmare
il vy, ey ere
ety anyvey, e
Sonasre i rat ety

XML Signatures:

XML Signatures can be applied to any digital content (data object), including XML. An XML Signature may be applied to the content of one or more resources. Enveloped or enveloping signatures are over data within the same XML document as the signature; detached signatures are over data external to the signature element. The implementation of XML Signatures is discussed in detail Digital Signatures Utility Architecture. XML Signatures is a specification which contains every information, for instance what is the Algorithm used for signing the content (text, image, document, etc), Algorithm used for generating the Message Digest, Message Digest, X509 Certificate info (The Certificate used for signing the content), Signed data. A sample XML (RSA Public Key) XML Signature looks like this.

<?xml version="1.0" encoding="UTF-8" ?>

<Signature xmlns="http://www.w3.org/2000/07/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20000613" />

<SignatureMethod Algorithm="http://www.w3.org/2000/07/xmldsig#rsa-sha1" />

<Reference URI="http://www.w3.org/TR/xml-stylesheet">

<DigestMethod Algorithm="http://www.w3.org/2000/07/xmldsig#sha1" />

<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>ffkFSnhdzSVlwxDgQQ7HwBaQpXc……………</SignatureValue>

<KeyInfo>

<KeyValue>

<RSAKeyValue>

<Modulus>tfi7aRofoJ7qsxNR26qe ………..</Modulus>

<Exponent>AQAB</Exponent>

</RSAKeyValue>

</KeyValue>

<X509Data>

<X509Certificate>MIIBjzCB+ == …………</X509Certificate>

</X509Data>

</KeyInfo>

</Signature>

Digital Signatures Utility Architecture:

In the Digital Signatures Utility Architecture Regardless of the environment in which it operates, a Managed PKI is made of up several components that must interoperate.

A brief summary of the purpose of each component is as follows:

Certification Authority The Certification Authority (CA) represents the trusted third party that issues keys and certificates to end users and manages their life cycle including generation, revocation, expiry and update.

Certificate Repository: The Certificate Repository provides a scalable mechanism to store and distribute certificates, cross-certificates and Certificate Revocation Lists (CRLs) to end users of the PKI.

Client Application: The Client Application is the end user software that requests, receives and uses public key credentials for conducting secure electronic commerce.

Additional Services: Additional services are required by a Managed PKI that will interoperate with the

other three components listed. These provide particular services that enable many electronic commerce applications. Typical services include Timestamping, Privilege Management, Automated Registration Authorities, etc…

Because of their central role in a Public Key Infrastructure, regardless of the environment, these components must interact and interoperate. These operations can be summarized as follows:

Certificate Generation:

This includes the generation of public key digital certificates and Certificate Revocation Lists with a defined format and syntax to ensure interoperability with other client applications and other PKIs. Also included is the generation of cross-certificates used to interoperate between Certification Authorities.

Certificate Distribution:

In order to conduct public key operations, one user must access another's certificates as well as associated CRLs. Accordingly, there must be a common protocol to allow for access to other user's certificates and associated revocation information.

Certificate Management:

Managing keys and certificates represent the most common PKI operations. Protocols for requesting, renewing, backing-up, restoring and revoking keys and certificates require interoperability between client applications and the Certification Authority.

Signature Verification System:

A Signature verification system that verifies the Digital Signature of the customer (user).

Digital Signature Utility Components (DS Utility)

Certificate Generation Certificate Management Certificate Revocation List Signature Verification

 XML/HTTP Request

 XML/HTTP Response

Case1: Client requests for a CA Certificate to be downloaded. (Here the term client is loosely used it can be another application like a Servlet or a JSP making a Request). The DS Utility Encapsulates the CA Certificate in an XML Document (For which Schema needs to be written) and sends back to the client.

Case2: Client sends registration information in a XML Document requesting a Digital Certificate. In this case DS Utility can act as a RA (Registration Authority) and Uses the Certificate Generation Component for generating the certificate and sends the XMLised X509 Certificate. DS Utility May store the Digital Certificate Information using the Certificate Management Component in a Database or using Published Protocols such as LDAP etc.

Case3: Client sends XMLised PKCS#7 Content (Or signed document by the User) to the DS Utility. DS Utility Parses the XML document and Parses PKCS#7 Signed Content and Verifies the Signed Content using the Signature Verification Component. If the signature is verified response may be positive else negative. Signature Verification Component may check for the Chain of Revocation of the Public Keys of the User’s Digital Certificate. If Signature is verified DS Utility replies back XML Signature which encapsulates the Parsed PKCS#7 Signed Data information (Which includes the Signature Value i.e. actual signed data)

How does an Application speak with the Utility:

An application Client can speak with DS Utility in the same fashion as a described above. For e.g.: If AMEX Property and Casualty is the application client it can interact with the DS Utility just as Described in above the Cases.

 HTTP Request

 XML/HTTP Request

 HTTP Response
 XML/HTTP Response

References:

1. Digital Signature Standard: http://csrc.ncsl.nist.gov/fips/fips186-2.pdf
2. Digital Signature Guide Lines: http://www.abanet.org/scitech/ec/isc/dsgfree.html
3. RSA Laboratories FAQ about Cryptography, Digital Signatures and et al, ftp://ftp.rsasecurity.com/pub/labsfaq/rsalabs_faq41.pdf
4. Electronic Signatures in Global and National Commerce Act: ftp://ftp.loc.gov/pub/thomas/cp106/hr661.txt
5. Digital Signature Laws: http://www.wolfenet.com/~dhillis/digsiglaw/index.htm
6. Verisign’s FAQ of Notarial Procedures for Digital Certificates: http://www.verisign.com/repository/notryfaq.html
7. X.509 PKI Certificate and CRL Profile: http://www.faqs.org/rfcs/rfc2459.html
8. PKCS #7 Cryptographic Message Syntax: http://www.faqs.org/rfcs/rfc2315.html
9. XML-Signature Syntax and Processing: http://www.w3.org/TR/2000/WD-xmldsig-core-20000711/
10. List of PKI Toolkit Vendors:

http://www.entrust.com
http://www.baltimore.com
http://www.phaos.com
http://www.rsasecurity.com
Client

DS Utility

Application Client

Browser

DS Utility

